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ABSTRACT 

The design of a distrihutcd systcm invnlvcs making dccisions on the placcment of data 
and programs acrnss the sites of a computer nctwork. In the case of distrihutcd 
datahases, the distrihution is done physically using tcchniques such as fragmcntation 
and allocation. Givcn a rclational datahase schcma, fragmcntation subdivides each 
relation into horizontal or vertical partitions. Navathe ct al. [ 1] proposes an hcuristic 
hased on thc grouping of attrihutcs that havc high aflinity or rclation hetwecn them. 
Some inconveniences are found with this approach, and wc prcscnt an alternative 
approach using gcnetic algorithm and graph partitioning to solvc the vertical 
fragmentation prohlcm. 
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1. INTRODUCTION 

The design of a distrihutcd sys!cm involvcs making dccisinns on thc placcment nf Jata anJ prnb,>rams across 

the sites of a computcr ne!work. In lhe case of Jislributcd datahases, the distrihution is done 
using techniques such as frugmentation and allncatioil. 

subdivides cach on a rclational databasc into horizontal or vertical 

Horizontal of a rclation is accomplishcd a sclcction opcration which 
of thc rclation in a dilTcrcnt partition bascd on a fragmentatinn prcdicatc. Vertical fragmcntation 

a relation into a numhcr of fragmcnts hy projccting ovcr its allrihutes. 

An important issue is the appropriate unit of Jistrihulion. Thc of a rcl;1tion into 

cach bcing trcatcd as a a numher of transactions ro he cxccutcd 

of rclations results in execution of a single qucry 1t mlo a sct of 

suhqueríes that operatc nn fragmenls. Thcrcfore, fragmcnlation typically incrcascs lhe lcvcl nf concurrcncc 

of !he qucrics and cnablcs !he of Jata in dnse to ils nf use, thus the 
pcrfurmance of the systcm. Once thc Jatahasc is fragmcntcd, onc has to JcciJc on lhc allocation of thc 
fragmcnts to various sitcs on lhe nctwork. Thc work will fncus on thc fragmcntatinn 
spcci fícally on vertical fragmcnlation. 

Tbc informatinn rcquircd for vertical fragmenlatinn is rclalcd lo applicalions that will run on lhe 

Jistrihutcd databases. Since vertical fragmcnta!ion in une fragment !hose attrihutcs usually acccssed 

thcrc is a nccd for snmc mcasurc of , This mcasurc is the of 

how rclalcd thc allrihutcs on !he application anJ qucry access 
Thc heuristic proposcd Navathe et bascd nn thc grouping of allributes that havc 

Thcrefore, the prohlem of vcrl.ical fwgmcntation can be cxprcsscd as a maximizaliun 
of the aninity hctwccn attrihutcs belonging lo the samc fragmcnL Thc general vertical 
algorithm by Navalhc ct al. is compulatinnally expcnsivc and its cnmplcxity is 0(2n) 

Since, genctic algorithms are often vie\Vcd as lünctinn oplimizers, it cnuld he uscJ to snlvc !he 

fragmentation prohlem. Gcnetic algnrilhms are a family of computational moJcls inspire<J hy evolutinn. 

Thcsc algorithms encoJe a potcnlial solution lo an spcciftc prohlcm on a simple chmmosomc-likc Jata 

structure and apply recomhina!inn lo lhcse structurcs so asto preserve critica! informal ion. 

Thc main aim of this paper is l_o conlinue uur rcsearch !~] on thc Jcvelnpmcnt of an allcrnative apprnach lo 

the proh1cm of vertical frag:mcmation, slarting from lhe "togethcrncss'' proposcJ hy Navalhc ct al. 

but incluJing gcnetic to..:hniques that guaranlcc a fast moving in thc so1ution space rcducing the time lo 

uhtain a solution fnr thc vertical fragmcntalÍDll of a rclation. Wc also want lo focus on iínJing an 

appmpriate unit of fragmentation lo uhtain halanccJ fragmcnls. 

The rest of Ibis paper is organizcd as fnllows. Scctinn 2 intwJuces somc hackgrounJ infmmation. Scclion 3 

dcscrihcs \)Ur allcrnativc lhc vertical rragmentation prohlcnL Scctinn 4 cxplains huw 

algorithms are applicd to the prohlcm. lmplemenlalinn and experimental rcsulls are prcscntcd in Se<~lion 5. 

Finally, cnnclusions are in Sectinn 6. 
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2. BACKGROUND 

Let R(A¡,A2, ... ,Au) a rclation whcre K= { A¡, ... ,Ai} 1s thc primary kcy for R. The vertical frag:mcntation 
problem can be stated as finding a sct of rclations 

F R = { R1 (A u, ... , AixJ, ... , Rm (Ami, ... , Am~J} 

such that the following comlitions are salisficJ: 

• Completcness: All the attributcs of R must be in at lcast one fragmcnt 

• Reconstruction: Thc join over the primary key allributes of the frügments in FR produces thc original 

relation R. 

• Disjointncss: Only the attrihutcs in K can he rcpeatcJ in all fragments. This will assure the intcgrity of 

the rclation when reconstructed. 

In a distrihutcd datahase system, thc ohj<Xtive of the vertical fragmentation procc<;s is to partitinn cach 
relation into a set of smaller rclations, so that many of the user applications (at lcast the mnst frcquents) will 
run on the same fragments reducing the numher nf pagc accesses. Nevertheless, for a rclation of n non­
primary kcy attrihutcs, the numher of possihlc vertical fragments rounJs to thc Bell numher B(n), which 
tends to nn for large values nf n. Such a large Jomain of solutinns lcaJs lo consiJer nnly heuristics to finJ a 

solution (not necessarily the optimal). 

For the vertical fragmentation, the information rcquircJ is rclatcJ to the applications that will run on the 
Jistributed databascs. Thereforc, there is a nccJ for some measure of "togctherness". The measure uscJ is 
the affinity of attributes which indica tes how dosel y relatcJ !he allributes are. lt depends on the applications 

and the query access frequencies. 

The traditional heuristic useJ to iinJ a sulution to this prohlcm was proposcJ hy [ 1] for JistributcJ 
databases asan extension to the centralizcJ Jatahase approach proposcJ on [3]. lt starls with the rclation tn 
he fragmentcJ and decides on henciicial partitinning hascJ on thc access hehavior of applications to the 
attrihutes. The "togetherness" mcasurc operator deJincJ in these approaches is callcJ Aflinity, and it is 

dcíined as: 
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aff( Ai,Aj)= E 
kl1;se( qeA;)=IA 

use( q k' A )=1 

(1) 

whcrc refi( qk) is thc numher of accesscs to allrihutcs (A¡, A) for each exccutinn of applicatinn qk at sil e S1 of 
thc distrihutcd system, acc¡{ {jk) is the acccss frcqucncy on si te S1 of thc distrihutcd system, and use( q"' A;) 
indicates the use of attrihutc A¡ by thc application qk. 

[1] prcscnts an optimization prohlcm (heuristic) using this information to solve thc vertical fragmentation 
prohlem. The proccss involvcs first clustering tngether the attrihutcs with high affinity for each other, and 
thcn splitting thc rclation accordingly. The prohlcm found with this approach is that thc splitting proccdure 
divides thc set of attributes twn-way. For larger scts of attrihutes, it is quite 1ikely that m-way parlitionilig 
may he nccessary. Thc alternative solution propnscd is to rccursivcly applicd thc hinary partitioning 
algorithm to cach of thc fragments ohtaincd during the prcvious itcration. Thercfore, designing a m-way 
partitioning is possihlc hut is compulationally expcnsivc. The complcxity of such an algorithm is 0(2m) 
hccause the algorithm searchcs the hctter fragmentation scheme tcsting cach of the possihle solutions nver 
thc entire space of alternatives. This alternative is a computationally expensive snlution that would make 
unfeasihle the inclusion of the hcuristic in a tools for automating the dcsigning of distrihutcd datahasc.<;. [9] 
prcscnts a m-way partition using gcnctic algorithms. Thc fragmcntation prohlcm is modclcd as a graph 
partitioning problcm hcforc it is sol ved using genetic algorithms. 

3.PROPOSAL 

The approach proposcd, in this paper, follows thc idea presentcd in [9]. We estahlishcd a corrcspondcncc 
hctwccn vertical fragmentation prohlcm and the undircctcd k-partitioning graph prohlcm. The 
correspondcncc could he stated in thc following way: 

Cnnsidcr a graph G=(V,E), where: 

• V rcprcscnls a set of vcniccs whcrc cach onc rcprcscnts an atLrihutc of thc rclation R lo he fragmcnted 

• E rcpresents a set of undircctcd cdgc.<;, such that (Vi, V) )E E iiT the anínity hctwccn Vi and V) is not cqual 
zero. 

• The weight nf each cdgc is rcprc.<>entcd by the aflinity measure hetwccn the vertices (attrihutes) that the 
edgc connecls. 
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Affinity Matrix Graph Rcprcscnlalion 

Figure 1: Generated Graph from an affinity matrix 

Thc graph partitioning prohlcm cnnsists of linding an assignment scheme !\: V -7P that maps attrihutes tn 
partitions. Each partititm will correspond tn a vertical fragment nf the relation. 

The dcsircJ assignation scheme !\ should minimize lile numher of applications that rcquires to access 
attributcs bclonging to Jifferent partitions and shnuld try tn balance the fragmentation accesses to incrcase 
the concurrence leve! of the applications. 

We denote by Part(t) lile set of vertices assigned toa p~u·tition t. i.e. 

Part( t) ={vE V: ,A( v) = t} (2) 

An altcrnative to find a partitioning of thc relation is lo try tn minimize the cosl of the outgoing cJgcs from 
a partition. We define C as the global aflinity mcasurc hetwecn atlrihutcs helonging lo JiiTerent partitions. 

C= 
\i(V¡,\' ¡)EE 

V¡El'an(I),V j~l'an(J) 

where ajf is the same as delíned in ( 1 ). 

atJ·(v ·V ·) .. l' J (3) 

The inconvenient of this approach is that it cnuld assign a11 thc attrihutcs lo the same partition, and in lhis 
case the cut-size is mínima!, or it cnuld assign attrihutcs with lnwer afrinity on the same partition, or m1e 
partition could be accesscJ more than othcrs. We would like to ohtain "halanccJ" partitions in the sensc nf 
lhe numbcr of accesses suppnrtcd hy each partition or fragment. 

Therefore, we nccJ lo induJe anothcr term that will hclp to Jínd a halanccJ partitioning. Thcn, for each 
partition t we define WP(t) as the global aflinity measure hetween thc attrihutes helonging to the partitinn t 
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w (t)= 
p 

[qtf'(v ¡,v J) 
'li(V¡.V j)EE 

V¡.v 1ePart(t) 

(4) 

It is an approximatinn of the numher of accesses supportcd by the partition t. Let W be the total aflinity 
measure 

W= [qff(v¡,VJ) (S) 

'li(V¡.V j)EE 

lt is an approximatcd measurc nf the total accesses supportcd hy the rclatinn to he fragmentcd. Bascd nn the 
measures Wp, W anJ C, we wnulJ like to make an assignment such that 

(6) 

is minimizcd where N is the numher of partitions or fragmenls. To avoiJ that all the attrihutes are assigncd 
to eme partition, we nccd lo induJe a restriction over N (N¿ 2 ). The first term on (6) linJs a balanccd 
partitioning, anJ it is trying tn minimize the JilTerence hetwccn the aninity nf each partitinn anJ the average 
access. The scconJ term represents the numher of accesses thal nccds more than one partition. It is raiscd to 
the pnwer of two becaus.e hoth terms ha ve the same importance anJ the same weight in the expression. 

Conlrary to Lhe ohjcctive function proposcJ in [2), our propose Joes not cstahlish a limilalinn nn the 
number of fragmenls Lo he consiJercd. In that way, to ohtain an assignment scheme A such that (6) IS 

minimizeJ over the graph Gis equivalen! to ohtain a vertical fragmentatinn scheme fnr the rclation R. 

Ohtaining exact solutinns for graph partitioning is compulalionally intractahle, anJ severa! suhoptimal 
methoJs have hccn suggestcd [5][6] for linJing gooJ solutions tn the graph partitioning prohlcm. Genelic 
algorithms are been useJ successfully tn linJ suhoptimal solutions fnr a wiJe variety of prohlems. 

4. GENETIC ALGORITHM 

This scction describes the represenlalion uscd to solve the vertical fragmcntation prohlcm moJclcd as a 
graph partitinning prohlcm, the function Lo he oplimizcJ anJ the genetic operators Jclincd Lhat exploit 
Jomi1in-specific knowlcdge to improve Lhe solution anJ the convergence of thc prohlem. 
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Represcntation: we use an intcger vector represcntation for each candidatc solutinn or individual in 
which the Í111 elcmenl of an inJiviJual is j iiT the i111 altrihutc nf Lhe rclation R is allocatcd to thc 
fragmcnt or partitinn lahclcd j. Thc sizc of an inJividual is cqual to thc numher nf non kcy al tributes 
in thc rclation R. The initial population is randnmly initializcJ. 



Fitness Function: the títness functinn is a measure, rclative lo the rest of the population, of how wcll 
the individual satisfies a problem-spccific metric. In our case, we want to allocate thnse attrihutcs 
that are accessed togcther in the same fragment. 'vVe use (6) as fitness function. 

l\Iutation Function: Traditional mutation functions selcct a random ,group of individuals that will 
undergo mutation. The mutation operator will rcplace a gene i of the individual with a value sclcctcJ 
uniformly random from 1 to the numher of non key attributcs in the relatinn R. We use a different 
approach to implement the mutatinn function. Thc mutatinn operator will replace a gene i o[ the 
individual with a value that is nnt sclcctcJ unifnrmly random, but with the value of the partition 
where the most affinity attribute was placed. 

Crossover: The crossover operator takcs genes frnm cach parent and combines them to crcate new 
individuals. The type nf crnssover cnmmonly uscd is a two-point crnssover, in which the parents ahc 
and lhfproduce o!Tspring aec and dhf The i111 componcnt of un n!Tspring is chosen to he the same as 
that of one of the two parents with cqual prohahility. This kinJ nf crnssnver ignores the fact that one 
parent may huve much bctter genetic material than the othcr. In that sense, we use a KnnwlcJge­
bascJ Non-Uniform Crossover opcratnr as in H] and we dclíne a prohahility vcdor pr=(pr¡, ... ,pru), 
where pr; is a real numher E [0, 1 ]. The value of this prnhahility vector dcpends on the rclative 1itncss 
of the parents, and on the knowlcJge ahout the pruhlem. Gi ven pr and the two parent, a=(a 1, ... ,a,,) 

and b=(b1, ... ,b,J, the o!Tspring e is ohtaincJ such that if a¡ = }J¡ then e¡ = a¡, clse thc prnhahility 
that C¡ = a¡ is pr¡. Let B he thc hest individual of the last general ion. For any candidate solution 
X, lct af(i,X) be dcfined as the aflinity nf thc partition whcre the attrihutc i is assigned 

af( i, X)= [a.ff(i, j) (7) 
VJI!'urt( i )= l'art( j) 

and lct (i,X,B) he dclíncJ as thc rclation hetwccn the artínity of thc partitinn where the attrihute i is 
assigncJ using the candidatc solution X and thc aflínity uf thc partition whcre thc attrihutc i is 

assigned using the hest individual of thc last gcncratiun 

(i,X,B)= qf(i,X) 
af(i,B) 

If a and h are thc two parcnts, we define de prnhahility vector as 

{
0.5 

pr¡= (i,a,B) 

(i,a,h)+(i,b,B) 

~l (i,a,B)+(i,b,B)=O 

orhenvise 

5. IMPLEl\lENTATION AND EXPERll\IENTAL RESULTS 

(8) 

(9) 

In this work was implcmentcJ the lítness functinn (6) and the mutatinn nperatnr explaincJ in the previous 
section. The crossover function was not implcmcntcJ and we use a two-point crossover. Our proposal wus 
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implcmcntcd thc PGAPack Parallcl Gcnctic Algorithm Lihrary !7 j. PGAPACK is a parallcl gcnctic 
algnrithm library that is intcnJcd to proviJc most capahilitics JcsircJ in a gcnctic algorithm package. Thc 
hcuristic proposcJ by Navalhc el al. extcnJcJ lo m-way partitioning was alsn implemcntcJ in orJcr to test 
our approach. For this implcmcntalion wc JiJ not use the parallcl facilities of PGAPACK lihrary, wc only 
conslruct a scqucntial implemcnlalinn of lhc gcnclic alguri ti! m. 

The cxpcrimcnts were carricJ out using a rclatiun with len non kcy aurihutcs, anJ wc ohtaincJ lhc samc 
fragmentation schcma using lhc m-way cxtension to Navathc et al optimization function as wcll as our 
proposcJ optimization function (6), Al! thc cxpcrimcnts wcrc done wilh a cmssovcr ratc of 8Y%J, mutalion 
rate of 10% and replaccmcnt ralc of 10%. Tahlc 1 rcpnrts dillcrcnt rcsulls using hoth imizatinn 
functions. Expcrimcnts wcrc conJucted varying thc population sizc. 

Populathm Extended Navatlle et al. optimizatiou Our optimization Fmu:tion 
Size Functiou 

Traditional Our Mutalion Opcrator Traditional Mutatíon Our Mutation Opcrator 
Mutation 

500 > 700 70 120 (í() 

400 > 700 1 1 () lOO 70 
300 > 700 130 IXO 1 1 () 

200 170 1 1 () 90 (\() 

100 > 700 >500 >500 90 

Table 1: Expcriincntal rcsults using dillcrcnl populalion sizcs 

A simple inspcclion of Tahlc 1 silows that our oplimization funclion rcquires lcss iterations than thc 
Navathe et al. m-way cxtcnJcJ optimi1.alinn function. AJJitionally, using lhc mutation opcrator defincJ in 
this work, thc numhcr of gcnetic scqucnccs (itcralions) nccJcJ lo ohtain Lile expcclcJ resull is JccrcascJ 
without varying thc population sizc. 

It is important lo remad~ that with a populatiun size of 10 inJiviJua!s, our optimization funclion using thc 
mutation operator herc JcrincJ, achieve the cxpet:tcJ solutinn in only 230 itcratinns. This means that instcaJ 
of using largc populalion sizc (wit!J tlle associatcJ cnst time tu carry nul a genetic scquencc ovcr thc 
population), it coulJ he rcJuceJ the population size and still ohlain solutions as gooJ as Lile achicvc by 
Navathe's et al. oplimization funclion. 

[~-~---=--~~'01iti_-"n-~~-~-----------Pr_-"_l"_':_c'~-~] 

Figure 2: Convergcncc curves fnr our fitness function with lraJitional anJ our proposcJ muta! ion opcrat()r. 
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Figure 2 shows how the nuvel mutalion nper~llor llllproves the cnnvergcnce ratc 
traditional random gene mutation. 

60 CONCLUSIONS 

with thc 

Distributed database Jcsign has bccomc an imponant elemenl of c!Tcctive infonnation managcmcnl. 
Design quality is critica! to achicve gooJ performance nf applicatinns ovcr thc Jatahasc. An important 
phase of distributcd databasc dcsign is vertical fragmentatinn process. In this papcr, we prcsentctl an 

altcrnative approach to carry out this process with the following aJvantages: 

e Inslead of exhaustivcly scarching over thc space of probable solutions g1vlllg by the hcuristics 
propnsed by Navathc, genetic algoritllm restrict the sean:h over the space of possible solutions. 

® Thc strategy proposeJ in this work is more rcasible than thc one sllowcd in [2] hccause it is possiblc tn 
ohtain vertical fragmentalion lhat CPntains any numhcr of fragments insteaJ of two fragments. 

"' The stralegy propnscd is more ellcctive than the one pmposeJ in !Sl] since it coulJ he useJ a small 
population anJ fcwer itcrations or gencratinns In ohtain the snlution of thc pmhlem. 

AJJitionally, wc have introJuccd novel opcralurs that expluit the lncality information inhcrcnt in vertical 
fragmentation prohlem. Wc have shnwn this cnllanccs !he muuhcr uf genctic scquenccs (itcrations) requirctl 
to gct a gnod vertical fragmenta! ion schcma. 

Wc ha ve presentcJ experimental results showing the kasihility \lf llUr approach; unfortunatcly, fragmenting 
very large rclations Joes require high amounts uf compulatiun hy thc genctic algorithm anJ thc crossover 
operator proposed. 

Wc are currently implcmcnting the Knnwlcdge-hase Crossllvcr Opcrator anJ parallclizing lile algorithm to 

run on Jistributcd memory machines such as lile Pm.vcXplorcr Parsytc.c. Wc are also working on Jcsigning 
a tool that will hclp the Jatahase Jesigncr tn hui!J anJ simulatc distributctl Jatahascs. Furthcrmme, wc are 
studying whether the genetic approach can he uscJ in case of incremental changcs (aggregation or 
climination of attrihutes in thc original rclation) withuut pcrfurming a cnmplcte rccakulation. The idea wc 

are working on is tn hcgin from the prcviuusly achicvcJ fragmcntation schema anJ with a small numher of 
gcnetic sequen ces ohtain thc schcma for the ncw relat iun. 
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